380 research outputs found

    PanoVOS: Bridging Non-panoramic and Panoramic Views with Transformer for Video Segmentation

    Full text link
    Panoramic videos contain richer spatial information and have attracted tremendous amounts of attention due to their exceptional experience in some fields such as autonomous driving and virtual reality. However, existing datasets for video segmentation only focus on conventional planar images. To address the challenge, in this paper, we present a panoramic video dataset, PanoVOS. The dataset provides 150 videos with high video resolutions and diverse motions. To quantify the domain gap between 2D planar videos and panoramic videos, we evaluate 15 off-the-shelf video object segmentation (VOS) models on PanoVOS. Through error analysis, we found that all of them fail to tackle pixel-level content discontinues of panoramic videos. Thus, we present a Panoramic Space Consistency Transformer (PSCFormer), which can effectively utilize the semantic boundary information of the previous frame for pixel-level matching with the current frame. Extensive experiments demonstrate that compared with the previous SOTA models, our PSCFormer network exhibits a great advantage in terms of segmentation results under the panoramic setting. Our dataset poses new challenges in panoramic VOS and we hope that our PanoVOS can advance the development of panoramic segmentation/tracking

    Optimizing boiler combustion parameters based on evolution teaching-learning-based optimization algorithm for reducing NO<sub>x</sub> emission concentration

    Get PDF
    How to reduce a boiler's NOx emission concentration is an urgent problem for thermal power plants. Therefore, in this paper, we combine an evolution teaching-learning-based optimization algorithm with extreme learning machine to optimize a boiler's combustion parameters for reducing NOx emission concentration. Evolution teaching-learning-based optimization algorithm (ETLBO) is a variant of conventional teaching-learning-based optimization algorithm, which uses a chaotic mapping function to initialize individuals' positions and employs the idea of genetic evolution into the learner phase. To verify the effectiveness of ETLBO, 20 IEEE congress on Evolutionary Computation benchmark test functions are applied to test its convergence speed and convergence accuracy. Experimental results reveal that ETLBO shows the best convergence accuracy on most functions compared to other state-of-the-art optimization algorithms. In addition, the ETLBO is used to reduce boilers' NOx emissions by optimizing combustion parameters, such as coal supply amount and the air valve. Result shows that ETLBO is well-suited to solve the boiler combustion optimization problem
    corecore